37 Магнитный поток

Пусть имеются два проводящих контура 1 в магнитном поле (рис. 1).

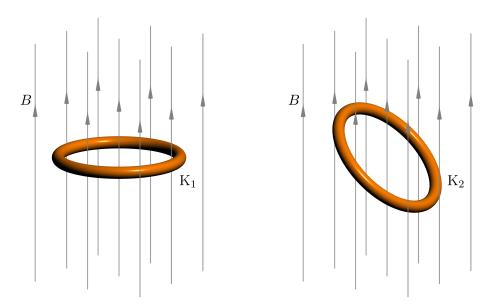


Рис. 1. Два контура в магнитном поле

Контуры K_1 и K_2 (кольца) расположены в однородном магнитном поле B. Плоскость контура K_1 перпендикулярна линиям поля, а через плоскость контура K_2 линии поля проходят H0 перпендикулярно. Из рис. 1 видно, что кольцо K_1 пронизывается бо́льшим количеством линий магнитного поля, чем кольцо K_2 : в таком случае говорят, что магнитный поток через кольцо K_1 больше, чем через кольцо K_2 .

Магнитный поток (Φ [Вб]) — это характеристика *количества линий* магнитного поля, пронизывающих контур:

$$\Phi = BS\cos\alpha,\tag{1}$$

где B — индукция магнитного поля (в котором находится контур), S — площадь контура, α — угол между вектором \vec{B} и перпендикуляром к плоскости контура. На рис. 2 изображен пример к определению магнитного потока.

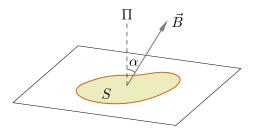


Рис. 2. Контур произвольной формы в магнитном поле

В магнитном поле с индукцией \vec{B} расположен произвольный контур площади S так, что вектор \vec{B} образует угол α с перпендикуляром Π к плоскости контура. Формула (1) дает магнитный поток через этот контур: $\Phi = BS\cos\alpha$.

 $^{^{1}}$ Контур — это фигура, образованная замкнутой линией в пространстве.