44 Вынужденные колебания в контуре

Электромагнитные колебания в колебательном контуре называются вынужденными, если они возникают под действием периодической вынуждающей силы.

Так, вынужденные колебания совершаются в контуре, подключенном к источнику *синусоидального* напряжения (рис. 1).

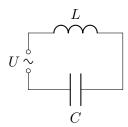


Рис. 1. Вынужденные колебания

Пусть в схеме, показанной на рис. 1, напряжение источника меняется по закону: $U = U_0 \sin(\omega t)$. Тогда в контуре происходят колебания заряда и тока с вынужденной циклической частотой ω . (Если бы колебания в контуре были свободными, то они совершались бы с собственной циклической частотой ω_c

контура, равной²:
$$\omega_{\rm c} = \frac{1}{\sqrt{LC}}$$
.)

На рис. 2 приведен график зависимости амплитуды силы тока в контуре от циклической частоты (*резонансная кривая*).

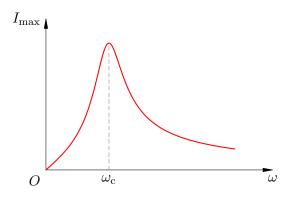


Рис. 2. Резонансная кривая

Как видно из рисунка, амплитуда тока тем больше, чем ближе вынужденная частота ω к собственной частоте $\omega_{\rm c}$ контура. При $\omega=\omega_{\rm c}$ (возможно, приблизительно) наступает резонанс — возрастание амплитуды колебаний. При $\omega\to 0$ ток в контуре равен нулю (ток малой частоты — это практически постоянный ток, который через конденсатор пройти не может); ток также равен нулю при $\omega\to\infty$ (при быстром изменении тока в катушке возникает большая ЭДС самоиндукции, препятствующая увеличению тока).

В случае колебаний в контуре (свободных или вынужденных) в нем протекает так называемый $переменный\ mo\kappa$ — ток, изменяющийся с течением времени.

 $^{^{1}}$ На схеме выводы источника — это выколотые точки.

²Подстановка формулы Томсона в определение циклической частоты.